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Abstract 

Background:  Field cancerization is the process in which a population of normal or pre-malignant cells is affected by 
oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA 
methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies 
on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could 
distinguish between pre-malignant lesions and tumor tissues in NSCLC.

Methods:  We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) 
and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels 
were profiled by bisulfite sequencing using a custom lung-cancer methylation panel.

Results:  ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from 
that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated 
regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-
specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and 
DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early devel-
opment. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise 
increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing 
a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested 
enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of tran-
scription factors in FC and tumorigenesis.

Conclusion:  We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, sug-
gesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also 
identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for 
lung cancer screening and for mechanistic studies of FC and early cancer development.
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Background
Lung cancer is the leading cause of cancer deaths world-
wide. Its high mortality is partially attributable to the 
scarce knowledge of molecular mechanisms mediating 
lung cancer pathogenesis and the late diagnosis of the 
majority of lung cancers [1]. Non-small cell lung can-
cer (NSCLC), representing the majority of diagnosed 
lung cancers, is a complex malignancy that develops 
through progressive pathologic changes driven by an 
interplay of a variety of molecular pathways including 
both genetic and epigenetic mechanisms [2]. Therefore, 
mapping genetic and epigenetic changes in normal tis-
sue at high risk of malignant transformation is critically 
important for understanding the mechanism of car-
cinogenesis, identifying early causal drivers and pre-
dicting cancer risk.

Field cancerization (FC), also referred to as pre-malig-
nant field defect, is the process in which a population of 
normal or pre-malignant cells is affected by oncogenic 
alterations leading to progressive molecular changes that 
drive their malignancy [2, 3]. The acquirement of tumor-
primed genetic alterations (such as EGFR and KRAS 
mutations, loss of heterogeneity of chromosomal regions 
3p and 9p, and genomic instability) has been described in 
histologically normal bronchial epithelia adjacent to the 
lung carcinoma [4–6]. On the other hand, DNA meth-
ylation is a primary epigenetic modification in the mam-
malian genome. Aberrant DNA methylation has been 
implicated in early cancer development, including lung 
cancer [7]. Belinsky and colleagues reported aberrant 
promoter methylation of p16, which commonly occurred 
in lung tumors [8], in bronchial epithelial sites from 44% 
of lung cancer patients and cancer-free smokers [9]. The 
aberrant methylation of various frequently methylated 
genes in lung cancer, including retinoic acid receptor 
2 β (RAR-β2), H-cadherin, adenomatous polyposis coli 
(APC), and Ras association domain family member 1 
(RASSFF1A), has also been described in bronchial epithe-
lial cells of heavy smokers [10]. Despite a number of stud-
ies [11, 12] have suggested the phenomenon of epigenetic 
FC in lung cancer, most of them interrogated the meth-
ylation profile in pre-malignant lesions (such as basal cell 
hyperplasia, squamous metaplasia, dysplasia), lacking 
appropriated subject-matched controls for both normal 
and malignant tissues. Furthermore, the vast majority of 
these studies focused on a limited number of candidate 
genes, the methylation of which had been often observed 
in lung cancer; the methylation profile was often assessed 
qualitatively not quantitatively. These limitations would 
attenuate the measured magnitude of epigenetic differ-
ences and inhibit the ability to identify the earliest meth-
ylation alterations that occur in carcinogenesis. Given 
the ubiquitous inter-patient heterogeneity, the extent to 

which DNA methylation profiles modify the FC effect of 
individuals may be largely obscured by such study design.

In the present study, we aimed to identify tumor-spe-
cific methylation patterns that could distinguish between 
pre-malignant normal lesions and tumor tissues and 
could potentially be developed as biomarkers, using sub-
ject-matched surgically-resected tumor, tumor-adjacent 
normal (ADJ) and tumor-distant normal (DIS) tissue 
samples.

Methods
Patients’ information and study design
A total of 52 patients with early-stage resectable NSCLCs 
from 2018 and 2019 were enrolled in this study. Matched 
surgically-resected tumor, tumor-adjacent normal (ADJ) 
and tumor-distant normal (DIS) tissue samples were 
collected from each patient during surgery. ADJ tis-
sues were biopsied 2 cm distant from resection margins, 
which allowed for both proximity to the tumor and a low 
chance of tumor cell contamination in case of a R2 resec-
tion margin; DIS samples were biopsied 5  cm distant 
from resection margins to make sure sample collection 
was feasible for centrally located stage T4 tumors treat-
ment with surgery of curative intent, which usually sets 
the margin ~ 5  cm outside of the tumor zone. Samples 
underwent histopathological assessment. Tumor tissues 
with a tumor cell fraction < 10% and normal tissues with 
any visible tumor cell were excluded. Eventually, thirty-
six patients had all three types of samples subjected to 
bisulfite DNA sequencing for methylation profiling that 
was used for subsequent analyses to identify differential 
methylation signatures. The histopathological and clini-
cal characteristics of patients were collected. The study 
was approved by the institutional review board of The 
Second Affiliated Hospital of Harbin Medical Univer-
sity. All patients provided written informed consent, in 
accordance with the Declaration of Helsinki.

DNA isolation
Genomic DNA were extracted tissue samples using a 
QIAamp DNA FFPE tissue kit, according to the manu-
facturer’s standard protocol (Qiagen, Hilden, Germany). 
DNA was quantified using the Qubit dsDNA assay (Life 
Technologies, Carlsbad, CA, USA).

Bisulfite targeted sequencing
DNA was sequenced using a brELSATM method as 
described previously [13]. Briefly, purified DNA was 
converted to single-strand DNA by sodium bisulfite 
treatment. The converted single-strand DNA was sub-
sequently ligated to a splinted adapter, and amplified by 
a uracil-tolerating DNA polymerase to generate whole-
genome bisulfite sequencing (BS-seq) libraries. Target 
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enrichment was performed using custom-designed lung-
cancer methylation profiling RNA baits covering 80,672 
CpG sites, spanning 1.05 megabases of the human 
genome (Burning Rock Biotech, Guangzhou, China). 
The target libraries were finally quantified by real-time 
PCR (Kapa Biosciences, Wilmington, MA, USA) and 
sequenced on a NovaSeq 6000 (Illumina, San Diego, CA, 
USA) using 2 × 150  bp cycles. The targeted methyla-
tion panel was designed as previously described [14, 15]. 
Briefly, many differentially methylated loci (DMLs) were 
selected from the 450 K microarray data of NSCLC/ adja-
cent tissue and normal plasma samples downloaded from 
TCGA dataset.

Data analysis
Bisulfite sequencing data analysis was performed using 
an optimized pipeline. Trimmomatic (v.0.32) was used 
to remove custom adaptor sequences and low-quality 
bases. Paired-end reads were aligned to C to T- and G to 
A-transformed hg19 genome using BWA-meth (v.0.2.2) 
[16]. After alignment, duplicate reads were marked 
by samblaster (v.0.1.20) [17], and low mapping quality 
(MAPQ < 20) or improper pairing reads were removed 
by sambamba (v.0.4.7) [18] from downstream analyses. 
Paired reads were merged by clipping overlapping reads 
to avoid double-counting of methylation calls.

Identification of differential methylation regions (DMRs)
The 80,672 CpG sites included in the panel were grouped 
into 8312 methylation blocks using an algorithm as 
described previously [15]. Specifically, we applied a 
region-defined algorithm with co-methylation effect 

between adjacent CpG sites in consideration [14]. To 
estimate the predefined coefficients of the algorithm, 
we used a series of methylation data of different tissues 
with the same panel mentioned in this study. Methyla-
tion blocks were defined as the genomic region consist-
ing of the neighboring CpG which were not only close on 
distance but also correlated on methylation level. Briefly, 
the difference among the methylation frequencies of each 
pair of CpG sites was calculated by Pearson’s correlation 
analysis, and normalized by the difference in genomic 
distance and methylation level. Within 8312 blocks, 84% 
were annotated in genes with 59% in promoter regions, 
7% in exons and 18% in introns (Fig. 1A).

A block-wise statistic methylMean was generated for 
downstream analyses. Besides the CpG sites, the infor-
mation of CHH (H denotes A, T or C) sites were also 
included to estimate the background error in sequenc-
ing which would help to correct the methylMean value 
of CpG sites. We denote Mj/Uj as the number of meth-
ylated/unmethylated read counts for the jth CpG sites 
within a methylation block. And Mek/Uek denotes the 
number of methylated/unmethylated read counts for the 
kth CHH sites within a methylation block. The corrected 
methylMean was defined as

methylMean =

∑
j Mj

∑
j(Mj + Uj)

error =

∑
j Mej

∑
j(Mej + Uej)

corrected methylMean =
methylMean− error

1− error
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Fig. 1  PCA analysis of methylation signatures in tumor tissues (TUM), adjacent (ADJ) and distant histologically-normal tissues (DIS). (A) The 
distribution of 8312 blocks in genome; (B) PCA analysis based on the methylation signatures of 8312 blocks
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The differential methylated regions (DMRs) were iden-
tified by comparing corrected methylMean values of 
blocks between different groups using “limma” package 
in R software. Blocks with significant difference (thresh-
old abs (log2FC) > 0.1, adjust p-value < 0.05) were cho-
sen. Bonferroni correction was applied to for multiple 
comparisons. The volcano plot and heatmap were drawn 
using R software.

Functional enrichment analyses
Gene Set Enrichment Analysis (GSEA) [19, 20] was per-
formed for the functional annotation of DMRs using 
the Molecular Signatures Database (version 7.4) [21]. 
For KEGG terms, c2.cp.kegg.v7.4.entrez.gmt and c2.cp.
v7.4.entrez.gmt were used separately [22]. Gene Ontol-
ogy (GO) Enrichment Analysis was also performed for 
DMRs [23]. The cut-off of two-sided adjusted p value (i.e. 
false discovery rate) was set to 0.05.

Statistical analysis
Statistical analysis was performed using R version 3.3.3 
software. Principal component analysis (PCA) [24] and 
hierarchical clustering analysis were performed for 
clustering samples according to their methylation pro-
files using all 8312 blocks or tumor specific block. Dif-
ferential methylation analysis was performed with the 
“limma” package. Differences were evaluated with Fish-
er’s exact test for proportions of categorical variables 
across groups, with Pearson’s correlation analysis for 2 
continuous variables, and with paired Student’s t-test for 
DNA methylation levels between 2 groups and multiple 
paired t-test for 3 groups. For other continuous variables 
between 2 groups, the Wilcoxon rank sum test was used 
for comparison, and ANOVA was performed for con-
tinuous variables across 3 groups. Statistical significance 
was defined as two-sided P values < 0.05.

Results
Demographic and clinicopathological characteristics 
of patients
Three types of tissue samples, including surgically-
resected tumor (TUM), tumor-adjacent normal (ADJ) 
and tumor-distant normal tissue (DIS) were collected 
from 52 enrolled NSCLC patients. Among them, 36 
generated sequencing data with sufficient quality for all 
3 sample types samples and therefore underwent fur-
ther analyses. The demographic and clinicopathological 
characteristics of the 36 patients were summarized in 
Table  1. The median age of the cohort was 58.6  years, 
ranging from 30 to 73. Male and female patients com-
prised 52.8% and 47.2% of the cohort, respectively. Of 
the 36 patients, 16 (44.4%) had no smoking history, 
and 6 (16.7%) and 14 (38.9%) patients were former and 

current smokers, respectively. Ten patients (27.8%) had 
their tumors measuring < 5 cm2; 12 (33.3%) had tumors 
measuring 5–9 cm2; and the tumor size of 11 patients 
(30.6%) ranged from 10 to 20 cm2. Only 3 patients had 
tumors > 20 cm2. The majority of the patients (50%) had 
adenocarcinomas, 19.4% were diagnosed with squa-
mous cell carcinomas, and 30.6% with tumors of other 
histology. The T stage and N stage were also summa-
rized in Table 1.

Distinct methylation profile of tumor tissues
PCA analysis was first performed based on 8312 
blocks and demonstrated the distinct methylation pro-
file of TUM as compared to both ADJ and DIS tissues 

Table 1  Characteristics of the 36 patients with qualified bisulfite 
sequencing data for matched TUM, ADJ and DIS samples

The 52 enrolled patients underwent exclusion by tumor cell fraction within 
their TUM, ADJ, and DIS samples, and 36 were eligible for subsequent analyses. 
ADJ—tumor-adjacent normal tissue. DIS—tumor-distant normal tissue. TUM—
surgically-resected tumor

Characteristic No. of patients (%)

Age, years (Median [Range]) 58.6 [30–73]

Sex

 Male 19 (52.8)

 Female 17 (47.2)

Smoking status

 Never 16 (44.4)

 Former 6 (16.7)

 Current 14 (38.9)

Tumor size (cm2)

  < 5 10 (27.8)

 5–9 12 (33.3)

 10–20 11 (30.6)

  > 20 3 (8.3)

Histology

 ADC 18 (50.0)

 SCC 7 (19.4)

 Others 11 (30.6)

T stage

 T1 12 (33.3)

 T2 11 (30.6)

 T3 6 (16.7)

 T4 6 (16.7)

 Unknown 1 (2.8)

N stage

 N0 22 (61.1)

 N1 10 (27.8)

 N2 3 (8.3)

 Unknown 1 (2.8)
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(Fig. 1B). Meanwhile, ADJ and DIS tissues had a similar 
methylation profile. Furthermore, heterogeneous meth-
ylation profiles were observed within tumor tissues.

A total of 1740 tumor-specific DMRs, including 1675 
hypermethylated and 65 hypomethylated DMRs, span-
ning 626 genes were found to be differentially methylated 
in TUM as compared to DIS (abs (log2FC) > 0.1, adjusted 
p-value < 0.05, Fig.  2, Additional file  1: Table  S1). Six of 
the top 10 differentially hypermethylated genes have been 
associated with lung cancer (Table 2), including BARHL2 
DMRTA2, OTX1, OTX2, MIR124 and HOXA9.

Next, we performed both GSEA and GO enrichment 
analyses for the functional annotation of the DMRs. 
GSEA analysis demonstrated that genes in the extracel-
lular matrix (ECM)-receptor interaction (NES = −1.89, 
P = 0.005, adjusted P = 0.021) and focal adhesion 
(NES = −1.67, P = 0.017, adjusted P = 0.046) pathways 
were less commonly methylated in tumor tissues than 
in normal tissues (Fig.  3A, B; Additional file  1: Fig. S1 
and Table S2). Besides, GO analysis identified a total of 
521 biological processes (BP), 30 cellular components 
(CC), and 19 molecular functions (MF) enriched among 
the DMRs. The most significantly enriched BP terms 
appeared to be related to cell differentiation, including 
pattern specification process, regionalization, and cell 
fate commitment (Fig. 3C). The transcriptional machin-
ery was strongly implicated in enriched MF terms 
(Fig.  3D), which was in line with CC terms enriched in 

transcriptional regulation complex, transmembrane 
transportation, and chromatin remodeling (Fig.  3E). 
Together, these terms depicted a rough picture in which 
the DMRs participated in an orchestrated program of 
transcriptional regulation, thereby highlighting the signif-
icance of transcription factors and chromatin remodelers 
in tumor initiation and development. We also performed 
gene set enrichment separately in genes harboring hyper- 
and hypomethylated DMRs. Similar enriched terms were 
observed for the former set (n = 626; Additional file  1: 
Fig. S2), while no term was significantly enriched among 
the latter, perhaps due to the small set size (n = 52).
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Fig. 2  Differentially methylated regions (DMRs) in tumor tissues (TUM) as compared with distant normal tissues (DIS). (A) The volcano plot of 
cancer-specific methylation blocks. (B) The heatmap of the 1740 tumor-specific DMRs

Table 2  The top 10 hypermethylated genes in tumor tissues

Gene log2(Fold 
change)

p value Adjusted p value

BARHL2 0.486 2.42E − 15 1.55E − 12

MIR124-3 0.408 4.31E − 09 7.68E − 08

DMRTA2 0.337 1.60E − 16 1.48E − 13

ESPN 0.330 3.32E − 11 1.63E − 09

OTX2 0.322 1.14E − 15 8.60E − 13

YAE1D1 0.316 2.83E − 13 4.90E − 11

SKOR1 0.313 5.53E − 16 4.60E − 13

ZNF876P 0.310 4.89E − 14 1.45E − 11

HOXA9 0.305 3.57E − 12 2.85E − 10

OTX1 0.305 9.17E − 14 2.12E − 11
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The identification of field cancerization (FC)‑specific DMRs
In order to further identify aberrant methylation during 
different steps of cancer development, we compared the 
methylation level of each block among TUM, ADJ, and 
DIS by multiple paired-t test. A total of 332 DMRs were 
found to be differentially methylated among the three tis-
sue types, indicating pre-malignant field-related meth-
ylation patterns. The methylation levels from 312 DMRs 
were significantly lower in DIS as compared to ADJ and 
also lower in ADJ than in TUM (Fig.  4A). Meanwhile, 
methylation levels from 20 DMRs were higher in DIS 
than ADJ, and also higher in ADJ as compared with TUM 
(Fig. 4B). Among the 332 FC-specific DMRs, 187 (56.3%) 
were overlapped with tumor-specific DMRs (Fig.  4C). 
Among the top 15 FC-specific hypermethylated genes, 
the methylation of ZSCAN31 [25], KCNA3 [26] and 
CDO1 [27, 28] were reported to be associated with lung 
cancer development (Table  3). Besides, methylation of 
DRD4 [29, 30], ZNF132 [31] and ZNF43 [32] have been 
reported to play roles in other cancer types. Due to the 
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Table 3  The top 15 hypermethylated genes in field 
cancerization

Gene log2 (Fold 
change)

P value adjusted p value

ZSCAN31 5.079  < 0.001  < 0.001

ZNF345 4.431 0.040 0.022

DRD4 4.312  < 0.001  < 0.001

RAI1 4.097  < 0.001  < 0.001

ZNF132 4.083  < 0.001  < 0.001

ZNF175 3.870 0.040 0.023

ZNF43 3.861 0.016 0.002

SNX32 3.847  < 0.001  < 0.001

FAM19A2 3.742  < 0.001  < 0.001

HIST1H2BE 3.651 0.040 0.007

FABP5 3.541 0.040 0.010

NTMT1 3.501 0.040 0.040

ENPP2 3.440 0.040 0.032

KCNA3 3.401 0.035 0.005

CDO1 3.395  < 0.001  < 0.001
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small number of the FC-specific DMRs identified, func-
tional enrichment analyses failed to identify any enriched 
pathways.

The total of 8312 blocks included in the panel span 2631 
genes, among which 385 (14.6%) are transcription fac-
tor genes. On the other hand, the 332 FC-specific DMRs 
were annotated in 241 genes. Among the 241 genes, 72 
(29.9%) were transcription factor genes (Fig.  4D; Addi-
tional file 1: Table S3). Hypergeometric analysis revealed 
that these differentially methylated genes were enriched 
with transcription factor genes (P = 4.729e − 11), which 
were consistent with GO enrichment results. Transcrip-
tion factors also account for a similar proportion in dif-
ferentially methylated tumor-specific genes (30%). These 
remarkable percentages suggested the role of epigenetic 
regulation of transcription factors as a key step in driving 
malignancy and FC.

Finally, we evaluated the associations between meth-
ylation levels of FC-specific DMRs in tumor samples and 
clinical characteristics by PCA analysis. We found that 

age, histology, and tumor size were significantly associ-
ated with DMR methylation level (Table 4). These asso-
ciations were confirmed with further analyses (Fig.  5). 
Among the genes most intensely methylated in tumor 
samples, patients with squamous cell carcinoma had sig-
nificantly higher methylation level than those with ade-
nocarcinoma (P = 0.024; Fig.  5A), and methylation was 
also significantly correlated with tumor size (R = 0.38, 
P = 0.023) and age (R = 0.59, P < 0.001; Fig. 5B, C). Among 
the hypomethylated genes, men showed lower methyla-
tion levels than women (P = 0.042; Fig. 5D).

Discussion
DNA methylation, occurring very early in the process of 
carcinogenesis, has been widely recognized as an impor-
tant cancer-related biomarker. In the present study, we 
identified 1675 hypermethylated and 65 hypomethyl-
ated tumor-specific DMRs, which were annotated by 
626 genes. Among these differentially methylated genes, 
some have been confirmed to be regulated by meth-
ylation in lung cancer development. BARHL2 [33, 34], 
DMRTA2 [33, 35, 36], OTX1 [33, 34] and OTX2 [33, 
37] were identified as DNA methylation markers for 
lung cancer. Increased methylation of MIR124 has also 
been found in NSCLC [38]. Methylation of HOXA9 has 
been demonstrated as a reliable prognostic marker for 
NSCLC [28, 39–41]. We further performed functional 
enrichment analysis to clarify the role of methylation in 
NSCLC. We found a trend of methylation down-regu-
lation for genes in ECM-receptor interaction pathway 
(adjusted p = 0.021). ECM constitutes the main part of 
the extracellular microenvironment. Its synthesis, dis-
tribution, and degradation are closely linked to the dif-
ferentiation, proliferation, invasion, and metastasis of 
malignant tumors. Overexpression of the ECM-receptor 

Table 4  PCA of the methylation levels of field cancerization-
specific DMRs in tumor samples revealed significant associations 
(in bold) with some clinical features

ADJ—tumor-adjacent normal tissue, DIS—tumor-distant normal tissue, DMR—
differential methylation region, TUM—surgically-resected tumor

P value PC1 PC2 PC3

Age 0.007 1.081e − 13 3.091e − 05
Sex 0.374 0.1621 0.0026
T-stage 0.1714 0.9696 0.054

N-stage 0.2857 0.2769 0.9209

Histology 0.0728 0.0003 0.0792

Smoking status 0.2904 0.7241 0.3701

Tumor size 0 0.223 0

R = 0.59, P < 0.001
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Fig. 5  Association between DNA methylation levels of field cancerization-specific differentially methylated regions (DMRs) and clinicohistologic 
characteristics. (A) Relative DNA methylation levels per histology among hypermethylated DMRs. (B) Correlation between relative DNA methylation 
evels and tumor size or (C) patient age among hypermethylated DMRs. (D) Relative DNA methylation levels per sex among hypomethylated DMRs. 
Hypermethylated DMRs refer to those showing a methylation level pattern of tumor-distant normal tissues < tumor-adjacent normal tissues < tumor 
tissues, and hypomethylated DMRs refer to those with a complete reversed pattern. ADC adenocarcinoma, SCC squamous cell carcinoma
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(hyaluronan receptor HMMR) has been found primar-
ily in LUAD and was connected with an inflammatory 
molecular signature and poor prognosis [42]. Lim et  al. 
developed a signature based on the expression of 29 
ECM‑associated genes to predict the prognosis of the 
patients at the early stage of NSCLC [43].

More interestingly, we also identified 332 field-can-
cerization specific DMRs spanning 241 genes, which 
were differentially methylated in ADJ as compared with 
TUM and DIS. Compared with tumor-specific DMRs, 
these FC-cancerization specific DMRs may represent 
earlier methylation alterations that occur in carcinogen-
esis and serve as more sensitive biomarkers for early-
detection and risk assessment for lung cancers. Of the 
15 genes where the top differentially methylated DMRs 
residue (Table  3), ZSCAN31 is thought to function as a 
transcription factor which is involved in airway structure 
or remodeling [44]. ZSCAN31 has also been reported 
to be significantly hypermethylated in lung cancer [25]. 
CDO1 silencing promotes proliferation of NSCLC by 
limiting the futile metabolism of cysteine. Methylation of 
CDO1 has been identified as a specific marker for lung 
cancer diagnosis [27, 28]. KCNA3 functions in voltage-
gated potassium channels, which play a variety of roles 
in cancer progression. KCNA3 inactivation via promoter 
hypermethylation has been found across multiple can-
cer types including lung, breast, pancreas, ovarian, kid-
ney, prostate, and colon [26, 45]. Besides, DRD4, ZNF132 
and ZNF43 have been linked with other non-lung cancer 
types: DRD4, encoding dopamine receptor, is involved 
in early brain development and epigenetically repressed 
in pediatric CNS tumors [30]; it also has be identified as 
a potential epidriver in hepatocellular carcinoma [29]. 
ZNF132 belongs to C2H2 zinc finger protein family and 
plays an important role in ESCC development as a tumor 
suppressor gene. It has been identified as a novel hyper-
methylation biomarker in ESCC [31]. Hypermethylated 
ZNF43 has been reported as a biomarker for colorectal 
cancer [32]. We reported the first clinical evidence that 
methylation of DRD4, ZNF132 and ZNF43t may be also 
involved in lung cancer development. Furthermore, 
we also identified several novel methylation biomark-
ers that have not previously been reported in cancer. 
Some of them are transcription factors, such as ZNF345 
and ZNF175 (Table  3). Hypergeometric analysis further 
revealed an enrichment of transcription factor genes 
(p = 4.729e − 11) in the 241 differentially methylated 
genes. Consistently, the most significantly enriched GO 
BP, CC, and MF terms highlighted a sizable proportion of 
genes participating in transcription regulation and chro-
matin remodeling. Collectively, these findings suggested 
the role of epigenetic regulation of transcription factors 
as a key step in driving malignancy and FC.

Different cell type composition could be a powerful 
source of DNA methylation level changes between surgi-
cal samples, and immune infiltration cell is a prominent 
cause of cell type composition perturbations. To evalu-
ate the extent to which immune infiltration could have 
affected methylation level changes, we compiled a list of 
782 immune cell marker genes from literature. Twelve of 
these markers harbored regions among the 1675 hyper-
methylated regions in this study, and 2 markers for the 65 
hypomethylated.

Overall, DM immune cell markers accounted for 0.8% 
of all DM genes. Additionally, no GO or KEGG terms 
related to immune-related biological processes or func-
tions were significantly enriched differentially methylated 
genes (Fig. 3). These findings suggested that immune cell 
infiltration was present but did not remarkably inter-
fere with the identification of differentially methylated 
genes. Apart from cell type makeup, functional enrich-
ment of genes identified with a targeted approach may 
be largely affected by the targeted panel. We compared 
the enriched GO BP terms among the genes that har-
bored the targeted methylation blocks and those among 
randomly sampled subsets (Additional file 1: Fig. S3). The 
different enrichment results suggested no inherent con-
centration of specific GO terms among the 2613 targeted 
genes.

Compared with previous works that identified genes 
differentially methylated in TUM and ADJ [15, 46, 47], 
strength of this study partly stems from a novel design 
that used two normal samples at defined distances way 
from resection margins and therefore allowed identifica-
tion of genes that showed FC-specific dynamics of DNA 
methylation levels. These genes showed progressively 
enhanced or attenuated methylation as the location drew 
nearer to the tumor, thereby providing candidate markers 
for tracking tumorigenesis and early development. On 
the other hand, the major limitation of this study is the 
lack of validation of the prognostic values of DMRs. This 
is largely due to the short follow-up time after the surgery 
so that the relapse-free survival data of patients remains 
immature. This study was also limited by the lack of a 
well-defined consensus on the area undergoing canceri-
zation, as there is clinical evidence suggesting that lung 
tissues deemed non-tumorous patients NSCLC patients 
may already be under FC due to carcinogen exposure 
[46, 47]. Therefore, although the DM genes with progres-
sive increase/decrease as location sample drew nearer 
to the tumor remain FC-specific, it is unclear how their 
methylation levels change during early cancer develop-
ment without a validated non-cancerous control sam-
ple. Besides, functional studies should be performed to 
confirm the roles of those newly identified biomarkers in 
field cancerization of lung cancer.
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Conclusions
In conclusion, our data revealed distinct methylation 
patterns between pre-malignant lesions and malignant 
tumors, suggesting the essential role of DNA methylation 
as an early step in pre-malignant field defects. Moreo-
ver, our study also identified cancer-specific methylation 
blocks that could potentially be used as markers for lung 
cancer screening.
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